Tel: +86-0755-88821774
Deutsch Español Français Italiano Português 日本語 اللغة العربية Русский 中文
Location: GrantWave » Solutions » DWDM in Metro Networks


    Contact Us

    • Tel: +86-0755-88821774

    DWDM in Metro Networks

    2016-08-02 11:47 GrantWave

    The long distances made possible by advances in technologies such as optical amplifiers, dispersion compensators, and new fiber types, resulted in the initial deployment of DWDM technology in the long-haul networks. Once these technologies became commercially viable in the long-haul market, it was the next logical step to deploy them in the metro and, eventually, in the access networks. Besides, as we know, the networks are now being asked to carry heavy data loads, deliver streaming video and provide internet access to a rapidly growing numbers of business and private users, therefore an enormous amount of bandwidth capacity is required to satisfy the service demand by customers. As a result, DWDM metro networks emerged at the right moment.


    What Is a Metro Network?

    The overall network infrastructure can be subdivided in three domains: long-haul network, metro network and access network (see picture below). Long-haul networks are at the core of the global network. Dominated by a small group of large transnational and global carriers, long-haul networks connect the metro networks. At the other end of the spectrum are the access networks. These networks are the closest to the end users, at the edge of the metro network. Between these two large and different networking domains lie the metro networks. The metro network is a network running across the city, or it may span a metropolitan area wherein several cities are connected on close proximity. In a typical scenario this might be in a range of 200-400 kilometers.


    There is a natural tendency to regard the metro network as simply a scaled-down version of the long-haul network. But there are some differences between them. Usually, networks serving the metropolitan area encompass shorter distances than in the long-haul transport networks. Besides, network shape is more stable in long-haul, while topologies change frequently in the metro network. Many more types of services and traffic types must be supported in metro networks, from traditional voice and leased line services to new applications, including data storage, distributed applications, and video. The long-haul, by contrast, is about big pipes. In fact, since the metro network lies at a critical juncture, on the one hand, it must meet the needs created by the dynamics of the ever-increasing bandwidth available in long-haul transport networks. On the other hand, it must address the growing connectivity requirements and access technologies that are resulting in demand for high-speed, customized data services.


    Why Use DWDM in Metro Networks?

    In the past, SDH (Synchronous Digital Hierarchy) which has a North American equivalent named SONET (Synchronous Optical Network) has been the core component in a metro network. The problem with this technology is that it is highly structured, has very specific interfaces, offers limited bandwidth, and does not offer the versatility that's demanded by enterprises. It is also very difficult and complex to deploy Ethernet over SDH. It requires high capital expenses and also higher operational costs.


    DWDM technology has emerged as the alternative to SDH in metro networks. A DWDM environment offers versatility and flexibility and requires enterprises and carriers to deploy more sophisticated technology. A DWDM metro network is typically bit-rate protocol independent and allows you to carry native databases. This lowers capital expenses and operational expenses, and offers greater sophistication over SDH-enabled metro networks. Another important development, which is visible, is the commonality of Ethernet. We have Ethernet in VoIP (Voice over IP), Ethernet for videos etc. Instead of relying on a SONET infrastructure, which is optimized for voice and expensive to deploy, metropolitan Ethernet providers use a combination of fiber, DWDM and Ethernet boxes. The combination of DWDM equipment and simple Ethernet gear is much less expensive than SONET equipment, enabling metropolitan Ethernet providers to offer cut-rate pricing.


    DWDM Metro System Components

    In this part, we may only analyze the devices used to combine and separate the various wavelength channels. They include multiplexers, demultiplexers, optical add/drop multiplexers and devices based on a new emerging technology called optical cross connects (OXC). As DWDM technology achieves tighter and tighter wavelength spacing, the requirements and performance specification for wavelength selective components become increasingly demanding.


    Multiplexer and Demultiplexer

    A multiplexer is used to combine different wavelength signals onto a single optical fiber. We could consider a standard broadband coupler as a MUX. Instead DWDM MUX is a device used to combine multiple wavelengths onto a single fiber while keeping the signal loss as small as possible. The demultiplexer is a device that separates a multiple wavelength signal into its individual wavelength components. It is important for the DEMUX to have low insertion loss, but it is much more important for it to reject the unwanted wavelengths so the channel receiver will have a signal with a high S/N ratio. As channel spacing becomes smaller and smaller, the wavelength selectivity of the DEMUX becomes of primary importance.


    Optical Add-Drop Multiplexer (OADM)

    OADMs are the most critical enablers of metropolitan optical networking and permit selective adding or dropping of a precise number of optical wavelength channels of any rate, format or protocol into the DWDM network. The most straightforward configuration for implementing a fixed OADM is the following. All the N wavelength channels in the aggregate traffic are demultiplexed into their wavelength tributaries. The tributary signals are then multiplexed again to form the outgoing aggregate signal. By using these two devices, one can access the desired tributaries and add or drop any wavelengths.


    Optical Cross Connect (OXC)

    The OXC is a device used to provide selective routing of DWDM channels. It uses optical switches in combination with other components that can be based on fiber-switching technology or on wavelength-switching technology. The primary purpose

    Quick Links
    Services & Supports
    Hot Products